not directly inter-convertible like forms of energy are.

10.6 Collisions of Extended Bodies in Two Dimensions

Bowling pins are sent flying and spinning when hit by a bowling ball—angular momentum as well as linear momentum and
energy have been imparted to the pins. (See Figure 10.25). Many collisions involve angular momentum. Cars, for example, may
spin and collide on ice or a wet surface. Baseball pitchers throw curves by putting spin on the baseball. A tennis player can put a
lot of top spin on the tennis ball which causes it to dive down onto the court once it crosses the net. We now take a brief look at
what happens when objects that can rotate collide.

Consider the relatively simple collision shown in Figure 10.26, in which a disk strikes and adheres to an initially motionless stick
nailed at one end to a frictionless surface. After the collision, the two rotate about the nail. There is an unbalanced external force
on the system at the nail. This force exerts no torque because its lever arm r is zero. Angular momentum is therefore conserved
in the collision. Kinetic energy is not conserved, because the collision is inelastic. It is possible that momentum is not conserved
either because the force at the nail may have a component in the direction of the disk’s initial velocity. Let us examine a case of
rotation in a collision in Example 10.15.

Figure 10.25 The bowling ball causes the pins to fly, some of them spinning violently. (credit: Tinou Bao, Flickr)
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Figure 10.26 (a) A disk slides toward a motionless stick on a frictionless surface. (b) The disk hits the stick at one end and adheres to it, and
they rotate together, pivoting around the nail. Angular momentum is conserved for this inelastic collision because the surface is frictionless

and the unbalanced external force at the nail exerts no torque.

@ EXAMPLE 10.15

Rotation in a Collision
Suppose the disk in Figure 10.26 has a mass of 50.0 g and an initial velocity of 30.0 m/s when it strikes the stick thatis1.20 m

long and 2.00 kg.
(@) What is the angular velocity of the two after the collision?
(b) What is the kinetic energy before and after the collision?

(c) What is the total linear momentum before and after the collision?



Strategy for (a)

We can answer the first question using conservation of angular momentum as noted. Because angular momentum is /@, we can
solve for angular velocity.

Solution for (a)

Conservation of angular momentum states

L=L 10.122

where primed quantities stand for conditions after the collision and both momenta are calculated relative to the pivot point. The
initial angular momentum of the system of stick-disk is that of the disk just before it strikes the stick. That s,

L= lw, 10.123

where [ is the moment of inertia of the disk and @ is its angular velocity around the pivot point. Now, I = mr? (taking the disk
to be approximately a point mass) and @ = V/r, so that

v
L=mr*= =mvr. 10.124
r

After the collision,

s

L'=]1"o’. 10.125

Itis @’ that we wish to find. Conservation of angular momentum gives

I'o" = mvr. 10.126
Rearranging the equation yields
,  mvr
A 10.127
I .

where I’ is the moment of inertia of the stick and disk stuck together, which is the sum of their individual moments of inertia
about the nail. Figure 10.12 gives the formula for a rod rotating around one end to be [ = Mr?/3. Thus,

, Mr M B
" =mr*+ —=m+ =) 10.128
3 3
Entering known values in this equation yields,
I' = (0.0500 kg + 0.667 kg)(1.20 m)> = 1.032 kg - m?. 10.129

The value of I’ is now entered into the expression for @', which yields

W = mro_ (0.0500 kg)(30.0 m/s)(1.20 m)
- r - 1.032 kg-m?

1.744 rad/s ~ 1.74 rad/s.

10.130

Strategy for (b)

The kinetic energy before the collision is the incoming disk’s translational kinetic energy, and after the collision, it is the
rotational kinetic energy of the two stuck together.

Solution for (b)

First, we calculate the translational kinetic energy by entering given values for the mass and speed of the incoming disk.

1
KE = Emvz = (0.500) (0.0500 kg)(30.0 m/s)> = 22.5J 10.131

After the collision, the rotational kinetic energy can be found because we now know the final angular velocity and the final

moment of inertia. Thus, entering the values into the rotational kinetic energy equation gives



KE’

l'e? = (05) (1.032 kg - m?) (1.74454 )
1.571.

10.132

Strategy for (c)

The linear momentum before the collision is that of the disk. After the collision, it is the sum of the disk’s momentum and that
of the center of mass of the stick.

Solution of (c)

Before the collision, then, linear momentum is

p =mv = (0.0500 kg) (30.0 m/s) = 1.50 kg - m/s. 10.133

After the collision, the disk and the stick’s center of mass move in the same direction. The total linear momentum is that of the
disk moving at a new velocity V' = r@' plus that of the stick’s center of mass,

which moves at half this speed because vey = ( %)a}’ = % .Thus,

p'=mv' + Mvcy = my' +T. 10.134
Gathering similar terms in the equation yields,
, ( M ) :
p=m+—=)v 10.135
2
so that
’ M ’
p = m+7 rw'. 10.136
Substituting known values into the equation,
p' = (1.050 kg) (1.20 m) (1.744 rad/s) = 2.20 kg - m/s. 10.137

Discussion

First note that the kinetic energy is less after the collision, as predicted, because the collision is inelastic. More surprising is that
the momentum after the collision is actually greater than before the collision. This result can be understood if you consider how
the nail affects the stick and vice versa. Apparently, the stick pushes backward on the nail when first struck by the disk. The nail’s
reaction (consistent with Newton’s third law) is to push forward on the stick, imparting momentum to it in the same direction in
which the disk was initially moving, thereby increasing the momentum of the system.

The above example has other implications. For example, what would happen if the disk hit very close to the nail? Obviously, a
force would be exerted on the nail in the forward direction. So, when the stick is struck at the end farthest from the nail, a
backward force is exerted on the nail, and when it is hit at the end nearest the nail, a forward force is exerted on the nail. Thus,
striking it at a certain point in between produces no force on the nail. This intermediate point is known as the percussion point.

An analogous situation occurs in tennis as seen in Figure 10.27. If you hit a ball with the end of your racquet, the handle is pulled
away from your hand. If you hit a ball much farther down, for example, on the shaft of the racquet, the handle is pushed into

your palm. And if you hit the ball at the racquet’s percussion point (what some people call the “sweet spot”), then little or no force
is exerted on your hand, and there is less vibration, reducing chances of a tennis elbow. The same effect occurs for a baseball bat.
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Figure 10.27 A disk hitting a stick is compared to a tennis ball being hit by a racquet. (a) When the ball strikes the racquet near the end, a
backward force is exerted on the hand. (b) When the racquet is struck much farther down, a forward force is exerted on the hand. (c) When

the racquet is struck at the percussion point, no force is delivered to the hand.

) CHECK YOUR UNDERSTANDING
Is rotational kinetic energy a vector? Justify your answer.

Solution
No, energy is always scalar whether motion is involved or not. No form of energy has a direction in space and you can see that
rotational kinetic energy does not depend on the direction of motion just as linear kinetic energy is independent of the direction



of motion.

10.7 Gyroscopic Effects: Vector Aspects of Angular Momentum

Angular momentum is a vector and, therefore, has direction as well as magnitude. Torque affects both the direction and the
magnitude of angular momentum. What is the direction of the angular momentum of a rotating object like the disk in Figure
10.28? The figure shows the right-hand rule used to find the direction of both angular momentum and angular velocity. Both L
and @ are vectors—each has direction and magnitude. Both can be represented by arrows. The right-hand rule defines both to
be perpendicular to the plane of rotation in the direction shown. Because angular momentum is related to angular velocity by
L = I, the direction of L is the same as the direction of ®. Notice in the figure that both point along the axis of rotation.

L=Iw
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Figure 10.28 Figure (a) shows a disk is rotating counterclockwise when viewed from above. Figure (b) shows the right-hand rule. The
direction of angular velocity @ size and angular momentum L are defined to be the direction in which the thumb of your right hand points

when you curl your fingers in the direction of the disk’s rotation as shown.

Now, recall that torque changes angular momentum as expressed by

nett = ——. 10.138
At

This equation means that the direction of AL is the same as the direction of the torque T that creates it. This result is illustrated
in Figure 10.29, which shows the direction of torque and the angular momentum it creates.

Let us now consider a bicycle wheel with a couple of handles attached to it, as shown in Figure 10.30. (This device is popular in
demonstrations among physicists, because it does unexpected things.) With the wheel rotating as shown, its angular
momentum is to the woman's left. Suppose the person holding the wheel tries to rotate it as in the figure. Her natural
expectation is that the wheel will rotate in the direction she pushes it—but what happens is quite different. The forces exerted
create a torque that is horizontal toward the person, as shown in Figure 10.30(a). This torque creates a change in angular
momentum L in the same direction, perpendicular to the original angular momentum L, thus changing the direction of L but
not the magnitude of L. Figure 10.30 shows how AL and LL add, giving a new angular momentum with direction that is
inclined more toward the person than before. The axis of the wheel has thus moved perpendicular to the forces exerted on it,
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instead of in the expected direction.

S
Merry-go-round %
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Figure 10.29 In figure (a), the torque is perpendicular to the plane formed by r and F and is the direction your right thumb would point to if

you curled your fingers in the direction of F. Figure (b) shows that the direction of the torque is the same as that of the angular momentum





